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1 Modern Kelly Algorithm Proof

Proof of the convergence (see [1]).
Theorem. Solving the problem

min f(x) (1)

subject to
x ∈ X

where f(x) is continuous, convex function and X is a compact, convex set. Then the
sequence {xk} of the solutions to

fk(x) = min η

subject to
η ≥ αk(x), x ∈ X,

where αk(x) - supporting hyperplane at xk−1, converges to some x̄, and, moreover,
f(x̄) = f(x∗), where x∗ is an optimal solution to the original problem (implies x̄ is the
optimal solution).

Proof.
It is only necessary to show, that there exists the subsequence of fk(xk) which con-

verges to fopt - the optimum value of problem (1). If it does, then from monotonicity of
fk(xk) (because they are the solutions to the LP problem, and each next one has extra
constraint added, so the optimum value is greater or equal to the previous one) it follows
that fk(xk) converges to the same limit.

The sequence {xk} is in X, and X is compact, so there exists the limit point of that
sequence in X. In other words, there exists the subsequence xki → x̄, where x̄ ∈ X is
the limit point.

For every xki , fn(xki) = f(xki) ∀n > ki, because the supporting hyperplane at
point xki was added at step ki, and for any other point x ∈ X the function f(x) lies
above all hyperplanes, so the equality continues to hold. This can be written as

fk(x) ≤ f(x) ∀x ∈ X (2)

- simply the supporting hyperplane inequality is true for all hyperplanes, thus true for
the maximum of them. Since fk(x) might not converge to f(x) even point-wise, we
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will use the simple trick to show that they are still equal at x̄. We will construct the
auxiliary function f̃(x) in the following way. Note, that for every x ∈ X the sequence
fk(x) is bounded (for example by maximum of f(x) on X - exists by Weierstrass theorem
and f1(x1)). Also, it’s monotonically non-decreasing. Thus, by monotone convergence
theorem, there exist the limit, which we denote as f̃(x). By construction, fk(x) →
f̃(x) ∀x ∈ X - point-wise convergence. Since X is compact, we can apply Dini’s
theorem. So, fk → f̃ uniformly on X. Note, that fk were piecewise linear functions,
more precisely the maximum of supporting hyperplanes, and thus continuous functions.
By uniform convergence theorem, the function f̃ is also continuous. Thus, (xki → x̄) =⇒
(f̃(xki) → f̃(x̄)).

From (2), when putting k → ∞, we have that

f̃(x) ≤ f(x) ∀x ∈ X. (3)

Also, let us show another convergence: fki(xki−1) → f̃(x̄). Fix ϵ ≥ 0. Firstly, ||f̃(xki−1)−
f̃(x̄)|| ≤ ϵ, because f̃ is continuous. Secondly, ||fki−1(xki)− f̃(xki)|| ≤ ϵ because of uni-
form convergence (does not depend on xki : sup |f̃(x)− fki−1(x)| ≤ ϵ). Then

||fki(xki−1)− f̃(x̄)|| ≤ ||fki(xki−1)− f̃(xki−1)||+ ||f̃(xki−1)− f̃(x̄)|| ≤ 2ϵ (4)

Recall, that fki(xki−1) = f(xki−1), from (4) f(xki−1) → f̃(x̄). From continuous
property of f we have that f(xk) → f(x̄). As far as the limit is unique, we have that

f(x̄) = f̃(x̄) (5)

Denote xopt as the optimal solution for problem (1) (exists, because convex function on
a compact). Then f(xopt) ≤ f(x̄). From (2) we get

fk(x
opt) ≤ f(xopt) ≤ f(x̄).

Recalling, that xk is the minimum point for fk, we have that fk(xk) ≤ fk(x
opt), so finally

fki(xki) ≤ f(xopt) ≤ f(x̄)

Note that in (4) the x index is not that important because of uniform convergence, we
have putting k → ∞ and (5) that

f̃(x̄) ≤ f(xopt) ≤ f̃(x̄)

which implies that f(x̄) = f(xopt), and from this we get that x̄ is the optimal solution.
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