Homework exercise

Eugene Lykhovyd

1 Main section

The main problem: given $h_{k}>0, k=0, \ldots, N$ prove that

$$
\Delta_{N}=\frac{R^{2}+\sum_{i=0}^{N} h_{i}^{2}}{2 \sum_{i=0}^{N} h_{i}}
$$

is a convex function of h_{k}.
In this proof we will use the following inequalities:
Theorem 1 (Cauchy inequality). For positive a and b it holds $\frac{a+b}{2} \geq \sqrt{a b}$.
Theorem 2 (Cauchy-Bunyakovsky-Schwarz inequality). Let $x_{1}, x_{2} \in \mathbb{R}^{n}$. Then $\left(x_{1}, x_{2}\right) \leq$ $\left\|x_{1}\right\| \cdot\left\|x_{2}\right\|$.

Let's prove the following lemma.
Lemma 1. Let $x_{1}, x_{2} \in \mathbb{R}_{+}^{n}$, i.e. all coordinates are positive. Let 1 denote a vector of all ones. Then it holds

$$
2\left(x_{1}, x_{2}\right) \leq \frac{\left\|x_{1}\right\|^{2}}{\left(x_{1}, 1\right)}\left(x_{2}, 1\right)+\frac{\left\|x_{2}\right\|^{2}}{\left(x_{2}, 1\right)}\left(x_{1}, 1\right)
$$

Proof. By Cauchy inequality (noticing everything is positive)

$$
\frac{\frac{\left\|x_{1}\right\|^{2}}{\left(x_{1}, 1\right)}\left(x_{2}, 1\right)+\frac{\left\|x_{2}\right\|^{2}}{\left(x_{2}, 1\right)}\left(x_{1}, 1\right)}{2} \geq \sqrt{\frac{\left\|x_{1}\right\|^{2}}{\left(x_{1}, 1\right)}\left(x_{2}, 1\right) \frac{\left\|x_{2}\right\|^{2}}{\left(x_{2}, 1\right)}\left(x_{1}, 1\right)}=\left\|x_{1}\right\| \cdot\left\|x_{2}\right\|
$$

Then by Cauchy-Bunyakovsky-Schwarz inequality $\left\|x_{1}\right\| \cdot\left\|x_{2}\right\| \geq\left(x_{1}, x_{2}\right)$. QED
The next lemma will prove the hard part of the function we want to show convexity later.
Lemma 2. Let $x \in \mathbb{R}_{+}^{n}$. Then the function $f(x)=\frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}}$ is convex.

Proof. Firstly, notice that $f(x)=\frac{\|x\|^{2}}{(x, 1)}$.
Take $x_{1}, x_{2} \in \mathbb{R}_{+}^{n}$. Fix any $\lambda \in[0 ; 1]$. We prove convexity by definition. For the only inequality we apply the lemma above.

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) & =\frac{\left\|\lambda x_{1}+(1-\lambda) x_{2}\right\|^{2}}{\left(\lambda x_{1}+(1-\lambda) x_{2}, 1\right)}=\frac{\lambda^{2}\left\|x_{1}\right\|^{2}+2 \lambda(1-\lambda)\left(x_{1}, x_{2}\right)+(1-\lambda)^{2}\left\|x_{2}\right\|^{2}}{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)} \leq \\
& \leq \frac{\lambda^{2}\left\|x_{1}\right\|^{2}+\lambda(1-\lambda)\left(\frac{\left\|x_{1}\right\|^{2}}{\left(x_{1}, 1\right)}\left(x_{2}, 1\right)+\frac{\left\|x_{2}\right\|^{2}}{\left(x_{2}, 1\right)}\left(x_{1}, 1\right)\right)+(1-\lambda)^{2}\left\|x_{2}\right\|^{2}}{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)}= \\
& =\frac{\lambda\left\|x_{1}\right\|^{2}\left(\lambda+(1-\lambda) \frac{\left(x_{2}, 1\right)}{\left(x_{1}, 1\right)}\right)+(1-\lambda)\left\|x_{2}\right\|^{2}\left((1-\lambda)+\lambda \frac{\left(x_{1}, 1\right)}{\left(x_{2}, 1\right)}\right)}{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)}= \\
& =\frac{\lambda\left\|x_{1}\right\|^{2}\left(\frac{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)}{\left(x_{1}, 1\right)}\right)+(1-\lambda)\left\|x_{2}\right\|^{2}\left(\frac{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)}{\left(x_{2}, 1\right)}\right)}{\lambda\left(x_{1}, 1\right)+(1-\lambda)\left(x_{2}, 1\right)}= \\
& =\lambda \frac{\left\|x_{1}\right\|^{2}}{\left(x_{1}, 1\right)}+(1-\lambda) \frac{\left\|x_{2}\right\|^{2}}{\left(x_{2}, 1\right)}=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{aligned}
$$

Now basically we are almost done. Here is an easy proof of the next auxiliary function.
Lemma 3. Let $x \in \mathbb{R}_{+}^{n}$. Then the function $g(x)=\frac{1}{\sum_{i=1}^{n} x_{i}}$ is convex.
Proof. Every partial derivative of g is $\frac{\partial^{2} g}{\partial x_{i} \partial x_{j}}=\frac{2}{\left(\sum_{i=1}^{n} x_{i}\right)^{3}}$. Then the hessian of g is $H_{g}=\frac{2}{\left(\sum_{i=1}^{n} x_{i}\right)^{3}} J_{n}$ where J_{n} is the matrix of all ones. From J_{n} is positive semidefinite, we immediately conclude that H_{g} is positive semidefinite and $g(x)$ is convex on \mathbb{R}_{+}^{n}.

And the final result.
Theorem 3. Δ_{N} is convex.
Proof. Rewrite $\Delta_{N}=\frac{R^{2}}{2} g(h)+\frac{1}{2} f(h)$. Sum of convex functions multiplied by positive scalars in convex.

