Homework exercise

Eugene Lykhovyd

1 Main section

The main problem: given hy > 0,k =0,..., N prove that
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is a convex function of hy.
In this proof we will use the following inequalities:
Theorem 1 (Cauchy inequality). For positive a and b it holds “TH’ > Vab.

Theorem 2 (Cauchy-Bunyakovsky-Schwarz inequality). Let x1,x2 € R™. Then (x1,x2) <
]| - [|z2]]-

Let’s prove the following lemma.

Lemma 1. Let z1,22 € RY, i.e. all coordinates are positive. Let 1 denote a vector of all
ones. Then it holds
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Proof. By Cauchy inequality (noticing everything is positive)
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Then by Cauchy-Bunyakovsky-Schwarz inequality ||z1]| - ||z2|] > (21, 22). QED O

The next lemma will prove the hard part of the function we want to show convexity
later.

2
i

;
it

1S convez.

Lemma 2. Let v € R"}. Then the function f(x) =
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Proof. Firstly, notice that f(x) = ‘(ffll'j
Take 1,22 € R’!. Fix any A € [0;1]. We prove convexity by definition. For the only

inequality we apply the lemma above.
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Now basically we are almost done. Here is an easy proof of the next auxiliary function.

Lemma 3. Let x € R%. Then the function g(z) = = ' is convex.

Proof. Every partial derivative of g is aa?;gmj = 2. Then the hessian of ¢ is
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H, = %Jn where J,, is the matrix of all ones. From J, is positive semidefinite,
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we immediately conclude that Hy is positive semidefinite and g(x) is convex on R}. O

And the final result.

Theorem 3. Ay is convez.

Proof. Rewrite Ay = R;Q(h) + 1 f(h). Sum of convex functions multiplied by positive

scalars in convex. O



